Asphalt Mix Optimization for Airfield Pavements

Alexander (Sandy) Brown, P.Eng.
Canadian Field Engineer – Asphalt Institute
Technical Director – Ontario Hot Mix Producers Association

Outline

- A bit of history
- Marshall method
- Superpave method
- Airfield Asphalt Pavement Technology Program (AAPTP)
- DBA study for GTAA

September 2012
A Bit of History

- Use of the AK specifications
- Based on Marshall method
- Shift to the use of Provincial specifications
 - Ease of material supply in different provinces
 - Problem is that not all provinces use same standards leading to differing performance

The Marshall Method

- History
 - Developed by Bruce Marshall in late 1930’s for Mississippi Highway Department
 - Further modified in 1943 for WWII
 - Adopted as typical design method in 1949
 - Worked well as a design method into the 1980’s
- Problems
 - Wheel loading began to increase
 - Traffic on roads began to increase
 - Highways started to fail prematurely
Superpave

- Developed in response to pressures on the US highway system
- Strategic Highway Research Program (SHRP), authorized by Congress in 1987
- A highly focused, $150 million, 5-year effort designed to improve the performance of highway materials and highway maintenance practices with 2 subsequent extensions
- Adopted by all states within a few years (funded)

Superpave Mix Design System

- Use Performance Graded AC:
 - Selection of PGAC based on weather and traffic conditions at site
- Use Superpave Mix Design:
 - Perform Gyratory compaction based on traffic loading at site
- Superpave is still a work in progress
 - No accepted and validated performance test
 - Asphalt Mixture Performance Tester (AMPT)
PG Grading System for Asphalt Cement

PG

Performance Grade

58 – 28

High Temperature
Average 7-day maximum pavement design temp

Low Temperature
Minimum pavement design temp

LTPPBIND Software

http://www.fhwa.dot.gov/pavement/ltpp/bind/dwnload.cfm
LTPPBIND Software

- Determines Superpave PG Grades for any area
- Uses pavement temperature models
- Algorithms convert air to pavement temperature
 - Canadian contribution to SHRP through C-SHRP
- Based on over 8000 weather stations
- Uses reliability model (risk) to give 2 temperatures
 - Average 7 day high temperature
 - Lowest Temperature
Selected design ESAL’s will govern:
- Coarse & Fine Aggregate Quality
 - Consensus properties – aggregate angularity (course and fine)
 - Higher traffic requires higher quality
 - Closer to surface requires higher quality
- Gyratory compaction
 - $N_{\text{initial}} < 89\%$ (>11% Voids)
 - $N_{\text{design}} = 96\%$ (= 4% Voids)
 - $N_{\text{max}} < 98\%$ (> 2% Voids)
Superpave vs. Marshall

- FAA sponsored Research program carried out at Auburn University (same location as NCAT)
- Several research reports on using Superpave highway specifications for airport work
- Program was suspended in 2010 but reports still online
- Still delivering webinars
- Website – www.aaptp.us

Airfield Asphalt Pavement Technology Program (AAPTP)
PG Binder Grade Selection for Airfield Pavements (04-02)

- Determine EHE (Equivalent Highway ESALs)
- Method of evaluating loading on airfield as compared to pavements
 - Tire pressure
 - Wander (Pass-to-Coverage Ratio)
- Use of polymers – recommended in some cases due to stacking issues

Equivalent Highway ESALs (EHE)

[Graph showing EHEs for Binder Grade Selection vs. Annual Departures]
Recommendations

<table>
<thead>
<tr>
<th>Aircraft Stacking</th>
<th>Typical Speed (mph)</th>
<th>Grade Adjustment (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Runway Centers</td>
<td>Taxiways/ Runway Ends</td>
</tr>
<tr>
<td>None</td>
<td>≥ 45</td>
<td>15 to < 45</td>
</tr>
<tr>
<td>Little or none</td>
<td>≥ 45</td>
<td>15 to < 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occasional</td>
<td>–</td>
<td>5 to < 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequent</td>
<td>–</td>
<td>< 5</td>
</tr>
</tbody>
</table>

Implementation of Superpave Mix Design for Airfield Pavements (04-03)

- Three volume report with research comparing standard P-401 mixes to determine compatibility with Superpave
- 90% of North American runways are asphalt
- Looked at gradation and increased fines to reduce permeability
- Concerns about higher tire pressures but generally found that SGC produced higher densities
Table 40: Recommended Volumetric Properties For Selecting Optimum Asphalt Binder

<table>
<thead>
<tr>
<th>Tire Pressure (psi)</th>
<th>N_{design} Gyrations</th>
<th>Required Relative Density (% G_{max})</th>
<th>Voids in the Mineral Aggregate (VMA) (% Max)</th>
<th>VFA Range (%)</th>
<th>Dust to Binder Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td><100</td>
<td>50</td>
<td>≤90.5</td>
<td>96.0</td>
<td>70-80</td>
<td>0.6-1.2</td>
</tr>
<tr>
<td>100 to 200</td>
<td>65</td>
<td>1.2</td>
<td>13.0</td>
<td>65-78</td>
<td></td>
</tr>
<tr>
<td>>200</td>
<td>80</td>
<td>≤89.0</td>
<td>14.0</td>
<td>65-75</td>
<td></td>
</tr>
</tbody>
</table>

DBA Study for GTAA

- Concerns
 - Rutting and shoving in holding areas
 - Loss of friction
- Looked at typical GTAA mix specifications
- Looked at P-401 gradation mixes
 - FAA Brief 59A (May 2006)
- Looked at Marshall vs Superpave Gyratory for compaction
- Looked at some new asphalt binder technologies
Mixes studied

- Asphalt Cement Binder
 - PGAC 70-28 PMA + with Sasobit – MSCR testing at 58°C
- Reference GTAA Mixes – Marshall compaction
 - Surface (12.5 mm)
 - HDBC Binder (~16.0 mm)
- Superpave mixes
 - SP 12.5
 - SP 12.5 with 15% RAP + with Sasobit
 - SP 19.0 with Sasobit

Multiple Stress Creep Recovery (MSCR)

- Change in asphalt cement testing for grade bumping
 - Test done in standard DSR
 - Run with script – take an additional ~15 min
 - Run at two stress levels – 1.0 and 3.2 kPa

<table>
<thead>
<tr>
<th>Test</th>
<th>Continuous Grade</th>
<th>MSCR Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 70 -28</td>
<td>73.4 -32.4</td>
<td>58E -28</td>
</tr>
<tr>
<td>with 1.5% Sasobit</td>
<td>76.7 -28.4</td>
<td>58E -28</td>
</tr>
</tbody>
</table>
Warm Asphalt – What is it?

- Used to reduce environmental impact but has added construction benefits – compaction aid
- Heating of aggregate greatly reduced so CO$_2$ reduced, NO$_x$ and SO$_x$ are cut in half and cost reduced
- Many processes
 - Chemical packages to change surface interaction, Organic additives, Foaming (mechanical or admixture), Thiopave
- All run at lower temperature of placement
 - Typically 25°C lower than HMA for same conditions
- Used for airport and highway work in Europe
- Many trials in US and Canada
Testing Program

- Aggregate testing
 - Polished Stone Value (PSV)

- Mix Performance Testing
 - AMPT Dynamic Modulus – stiffness
 - AMPT Flow Number – rutting
 - Compactability and Coating – WMA mix design
 - Asphalt Pavement Analyser (APA) – rutting

Results

- AMPT testing
 - RAP stiffer than no RAP
 - 19 mm WMA stiffer than 12.5 mm
Flow number is better (less likely to rut) for the WMA mixes and the surface mix with RAP

Typical GTAA mix has a flow number than is acceptable

DBA Recommendations

- Asphalt cement grade is acceptable
- Superpave mixes meeting FAA P-401 specifications should perform better typical GTAA mixes
- The material and experience with Superpave is available in the GTAA area
- Trial projects should be undertaken to look at field performance
Thank you – Questions?
Frankfurt Airport - July 2004

Project Details

- Started in April 2003
- 4000-meter-long runway 61 m wide
- 300 incremental construction steps
- All night work to avoid interruptions in service
- Each night they replace 15 m length by full runway width
- Completed over 300 nights
- 60 cm asphalt layer on compacted gravel base and sand subgrade fill
- Low temperature asphalt with Sasobit (wax) in the beginning
- Later Shell bitumen with a different wax
Warm Asphalt

Project Details

- 300 people involved in the project every day of production
- 60 of them were on the site during the night – about 35 are working on the site and about 25 are truck drivers
- 425,000 tonnes of asphalt in the contract
- Placed ~150 tonnes of WMA a night
- Because of conduits (runway lighting) and access issues, no paver used for the first lift of 24 cm (conduit diameter – 22 cm)
Project Details

- Contract requirement – temperature of the pavement surface was not to be higher than 85°C at 06:30 – contractor chose warm mix
- When 150 to 200 m on centre-line were constructed, halted WMA placement for the night and milled surface to a depth of 4 cm
- Repaved full width with SMA surface for smoothness and friction (European Spec – 0/11 [gradation] with PmB 45 [SBS modified binder])
- Total project ~€38 million (~$62 million Can – 2004)
- Each night ~€120,000 (~$200,000 Can – 2004)